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The approximations implicit in BBnard convection have been modified to include 
viscous dissipation. It is shown that both the influence of an adiabatic temperature 
gradient and of viscous dissipation are governed by the same dimensionless 
parameter Di = agh/c,. Numerical calculations of finite amplitude convection 
are given for finite values of Di. It is found that increasing Di decreases flow 
velocities and finally stabilizes the flow. 

1. Introduction 
In  forced convection, viscous dissipation is not significant unless the Mach 

number is of order one. However, in natural convection viscous dissipation may 
be important if the body force is large or if the length scale of the problem is 
large. Ostrach (1952,1958) has shown that viscous dissipation plays an important 
role in natural convection in vertical channels and Gebhart (1962, 1971) has 
studied the role of viscous dissipation in the flow on vertical heated plates. 
These authors found that the non-dimensional parameter Di = agh/c,, (a  = co- 
efficient of thermal expansion, g = acceleration due to gravity, h = length scale 
of the problem, cp = specific heat a t  constant pressure) determined the influence 
of viscous dissipation, and it has been called the dissipation number. 

In  this paper the approximations implicit in the BBnard problem have been 
modified to  include the role of viscous dissipation. It should be noted that the 
roles of viscous dissipation and compressibility a.re of the same order when 
Gruneisen’s constant is of order one. Since it is known empirically that Gruneisen’s 
constant is of order one for liquids and gases, the effects of viscous dissipation 
and compressibility should be considered together for real substances. In  this 
paper only the effects of viscous dissipation are considered. The object is to 
understand better the role of viscous dissipation in natural convection, in parti- 
cular the role of the parameter Di. Numerical computations of finite amplitude 
convection will be presented; it mill be shown that viscous dissipation is directly 
coupled with the adiabatic temperature gradient. 
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2. Formulation of the problem 
We shall consider a layer of fluid which is confined between two horizontal 

boundaries and is heated from below. The applicable equations for steady 
thermal convection in a laminar, Newtonian fluid are (Batchelor 1967, p. 164) 

a(pu.i)pxi = 0, ( 1 )  

where (0, 0 , l )  is the unit vector in the direction of gravity, k the thermal con- 
ductivity, 7 the viscosity, Sij the Kronecker delta (Sij = 1 when i =j; &, = 0 
when i + j) and 5 is the second or bulk viscosity. The generalized linear equation 
of state is 

P = P o [ ~ - ~ ( T - T l ) + X P l >  (5) 

where x is the isothermal compressibility and po and TI are t,he density and 
temperature a t  the upper boundary of the fluid layer. 

Clearly it is desirable to  make as many approximations as possible in the 
above equations. The approach usually taken is to set ;y = 0 and assume that 
the density is constant except in the body-force term of the momentum equation. 
This is the Boussinesq approximation and it has been partially justified by 
Mihaljan (1962). Applying this approximation to  (1)-(5) along with the assump- 
tion of constant fluid properties and the condit,ion 

1, = POP+P (6) 

yields auipxi = 0, (7 )  

The second term on the left side of (9) represents the adiabatic temperature 
gradient considered by Jeffreys (1930) for the linear stability problem. 

We next introduce the non-dimensional variables 

and non-dimensional parameters 
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(v  = r /po and K = k/p,c,) in addition to Di,  which already has been defined; T2 
is the temperature of the lower boundary. The parameter R a  is the Rayleigh 
number and Pr the Prandtl number. Substitution of the non-dimensional 
variables and parameters into (7)-(  9) gives 

a q a q  = 0, (10) 

It is of interest to consider the volume integral of (12) over a convection cell. 
The convection terms and the conduction terms do not contribute to such an 
integral. However, the viscous dissipation term is positive definite and repre- 
sents a source of heat; therefore its integral is a positive quantity. The integral 
of the viscous dissipation term must be balanced by the volume integral o€ the 
term Di(T + 6) Us, which represents the adiabatic temperature gradient. Since 
the effects of viscous dissipation and adiabatic temperature gradient must 
cancel, it is necessary that they both depend upon the same dinlensionless 
parameter Di. 

3. Finite amplitude convection 
I n  order to investigate the influence of the parameter Di on finite amplitude 

BBnard convection numerical solutions of (lo)-( 12) have been obtained for two- 
dimensional cellular convection in a fluid layer. Periodic flow with a wavelength 
twice the height of the layer was assumed, furthermore mirror symmetry about 
each half-wavelength was assumed. It was also assumed that the Prandtl 
number is large so that the inertial terms of the momentum equation could be 
neglected. A finite difference technique was used; central space differences were 
used except for the convection terms in the energy equation. For these a special 
three-point non-central difference method described by Torrance (1 968) was 
used. Rigid isothermal boundary conditions were applied. Assuming an initial 
flow and temperature distribution the difference equations were solved for the 
final steady-state flow by iterative extrapolation. With the above assumptions 
the calculations were carried out using a square 10 x 10 grid. One case was 
checked using a 20 x 20 grid; the streamlines and isotherms were virtually 
identical to the corresponding 10 x 10 grid calculat,ion. The ability of this 
method to refine flow patterns with relatively coarse grids was previously 
demonstrated by Torrance & Turcotte (1971) and by Hsui, Turcotte & Torrance 
(1972); it is estimated that calculated temperatures and velocities are accurate 
within 5 yo. 

Streamlines and isotherms for 8 = 0, Ra = lo4 and Di  = 0, 0.5, 1 and 1.5 are 
shown in figure 1. As indicated by the decrease in $,,, the velocities decrease as 
Di is increased. For finite Di the flow is no longer symmetric since there is 
internal heat production. The results for 6 = 0, R a  = lo5 and Di = 0, 1 and 2 
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FIGURE 1. Streamlines (dashed lines) and isotherms (solid lines) for Ra = lW, 0 = 0 
arid various values of Di. ( a )  Di = 0,  = 94612 .  ( b )  Di = 0 . 5 ,  $u,ax = 7.1237. 
(c )  Di = 1 ,  $max = 4.9487. ( d )  Di = 1.5, $== = 1.9393. 

are given in figure 2. Again the velocities decrease with increasing Di. Also the 
flow breaks into two cells when Di = 2. The decrease in convection with increasing 
Di can be attributed to the increase in the adiabatic temperature gradient. Since 
i t  is the difference between the local temperature gradient and the local adiabatic 
temperature gradient that  drives convection, an increase in the adiabatic 
temperature gradient (increase in Di) with a fixed applied temperature difference 
(fixed h’a) reduces convection. Since the adiabatic temperature gradient is 
proportional to temperature i t  is a maximum in the lower part of the layer, 
particularly for the case 0 = 0 considered here. This is the reason why for 
Di = 2 and Ra = lo5 the lower part of the layer is stabilized, convection is 
restricted to  the upper part of the layer and its wavelength decreases as shown 
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(4 
FIGURE 2. Streamlines (dashed lines) and isotherms (solid lines) for Ra = 105, B = 0 
and various values of Di. (a )  Di  = 0, ?,bm,, = 37.028. ( b )  Di = 1, = 21.821. 
(c) Di = 2, = 4.067. 

in figure 2. The heating associated with viscous dissipation does not enhancc 
convection either locally or throughout the cell. 

To illustrate the decrease in heat transfer with increasing Di the Nusselt 
number N u  for each calculation is shown in figure 3. The Kusselt numbers 
decrease with increasing Di towards the conduction value of unity. The values 
of Di corresponding to the onset of convection for Rayleigh numbers of lo4 
and lo5 are in good agreement with the finite amplitude calculations. These 
values were obtained from the appropriate stabilit,y analysis. The decrease in 
convective heat transfer associated with the increase in dissipation is directly 
coupled to the increased stability associated with the increasing adiabatic 
temperature gradient. 
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FIGURE 3. Dependence of the Nusselt nriinber on the parameter Di for Raylaigh numbers 
of 10' and 109 with 8 = 0. 0, numerical calculations; 0,  stability analysis. 

Viscous dissipation significantly influences Benard convection when the 
parameter 1% is of order one. We have shown that viscous dissipation and the 
adiabatic temperature gradient must be considered simultaneously for finite 
amplitude Bknard convection. The principal effect of increasing Di a t  a fixed 
Rsyleigh number is to reduce t,hermal convection. 

The authors would like to  thank Professor Benjamin Gebhart for his con- 
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